Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters.
نویسنده
چکیده
Stochasticity is one of the most important properties in gene expression. Noise originates from two sources: thermal fluctuation inherent in the system (intrinsic noise) and variabilities in factors external to the system that usually result to the fluctuation in the kinetic parameters (extrinsic noise). This paper studies analytically the stationary fluctuation of the number of protein molecules through a mathematical model involving both sources of noises. The results in this paper show that the two sources of noises interlock to each other to generate total fluctuation in protein numbers. In particular, the extrinsic noises effect the total fluctuation in multiple ways, including the extrinsic fluctuation, the correlation with intrinsic noise, the alternation of the time averaging of transcription and translation, and the amplification of the total fluctuation by an impact factor. The impact factor is pronounced when the fluctuations in the degradation rates of mRNA or protein are large. Moreover, the extrinsic noise to the translational rate generates large fluctuation when the translational efficiency is too low, which is contrast to the translational bursting in high translational efficiency because of intrinsic noise. These results suggest that it is important to control the mRNA and protein degradation rate as well as the translational efficiency in order to attenuate the fluctuation in gene expression in the present of both intrinsic and extrinsic noises.
منابع مشابه
Intrinsic and extrinsic contributions to stochasticity in gene expression.
Gene expression is a stochastic, or "noisy," process. This noise comes about in two ways. The inherent stochasticity of biochemical processes such as transcription and translation generates "intrinsic" noise. In addition, fluctuations in the amounts or states of other cellular components lead indirectly to variation in the expression of a particular gene and thus represent "extrinsic" noise. He...
متن کاملStochastic gene expression in a single cell.
Clonal populations of cells exhibit substantial phenotypic variation. Such heterogeneity can be essential for many biological processes and is conjectured to arise from stochasticity, or noise, in gene expression. We constructed strains of Escherichia coli that enable detection of noise and discrimination between the two mechanisms by which it is generated. Both stochasticity inherent in the bi...
متن کاملLecture notes on stochastic models in systems biology
These notes provide a short, focused introduction to modelling stochastic gene expression, including a derivation of the master equation, the recovery of deterministic dynamics, birth-and-death processes, and Langevin theory. The notes were last updated around 2010 and written for lectures given at summer schools held at McGill University’s Centre for Non-linear Dynamics in 2004, 2006, and 2008...
متن کاملEffects of intrinsic stochasticity on delayed reaction-diffusion patterning systems.
Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the pr...
متن کاملInvestigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea
Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 256 4 شماره
صفحات -
تاریخ انتشار 2009